Convergence Analysis of Approximate Primal Solutions in Dual First-Order Methods
نویسندگان
چکیده
منابع مشابه
Approximate Primal Solutions and Rate Analysis for Dual Subgradient Methods
In this paper, we study methods for generating approximate primal solutions as a by-product of subgradient methods applied to the Lagrangian dual of a primal convex (possibly nondifferentiable) constrained optimization problem. Our work is motivated by constrained primal problems with a favorable dual problem structure that leads to efficient implementation of dual subgradient methods, such as ...
متن کاملLocal Linear Convergence Analysis of Primal–Dual Splitting Methods
In this paper, we study the local linear convergence properties of a versatile class of Primal–Dual splitting methods for minimizing composite non-smooth convex optimization problems. Under the assumption that the non-smooth components of the problem are partly smooth relative to smooth manifolds, we present a unified local convergence analysis framework for these Primal–Dual splitting methods....
متن کامل2753 1 Approximate Primal Solutions and Rate Analysis for Dual Subgradient Methods ∗
We study primal solutions obtained as a by-product of subgradient methods when solving the Lagrangian dual of a primal convex constrained optimization problem (possibly nonsmooth). The existing literature on the use of subgradient methods for generating primal optimal solutions is limited to the methods producing such solutions only asymptotically (i.e., in the limit as the number of subgradien...
متن کاملA Primal-Dual Convergence Analysis of Boosting
Boosting combines weak learners into a predictor with low empirical risk. Its dual constructs a high entropy distribution upon which weak learners and training labels are uncorrelated. This manuscript studies this primal-dual relationship under a broad family of losses, including the exponential loss of AdaBoost and the logistic loss, revealing: • Weak learnability aids the whole loss family: f...
متن کاملOn the ergodic convergence rates of a first-order primal-dual algorithm
We revisit the proofs of convergence for a first order primal-dual algorithm for convex optimization which we have studied a few years ago. In particular, we prove rates of convergence for a more general version, with simpler proofs and more complete results. MSC Classification: 49M29 65K10 65Y20 90C25
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Optimization
سال: 2016
ISSN: 1052-6234,1095-7189
DOI: 10.1137/15m1008956